If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-9r-6=0
a = 3; b = -9; c = -6;
Δ = b2-4ac
Δ = -92-4·3·(-6)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{17}}{2*3}=\frac{9-3\sqrt{17}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{17}}{2*3}=\frac{9+3\sqrt{17}}{6} $
| 3x+2=-4x+7-5+7x | | 15.61x=86.1 | | 2x+8=4x+28 | | r-(-16)=14 | | 8r+8=9r | | x-23.5=13.8 | | 5x+3x=4x+18 | | -16t^2+24t=0.75 | | -12-4(2x-7)=12x-14+10x | | -5(x-13)=-125 | | 15x-12=5(3x-4) | | x-23.5*2/5=13.8 | | -9d-1=-d-9d-10 | | 3-9z=-10z+1 | | x+19=2(4x-1) | | 3(u+6)=-4u+32 | | 3(g-8)-7=-7 | | (13y-38)+62=180 | | 6-2/3p=12 | | 3(g−8)−7=–7 | | 6.67=v+2 | | (x)/(18)=(2(3+1))/(9) | | 3m+2(m-4)=6-m | | 2(h+7)-9=9 | | N/n+3=9/2 | | 1.1+2.2t=9.9 | | -2s=-3s+7 | | 2x^2+4-88=0 | | 5=p÷25 | | 4/5(x+15)=-8 | | 17x=6x-19 | | .50r-12=-27 |